

 🎉 Introducing Honeybadger Insights — logging and observability from Honeybadger! Check it out →

 	

 Tour

 Features
 Error Tracking
 Uptime Monitoring
 Status Pages
 Logging & Observability
 Cron & Heartbeat Monitoring

 Frameworks

 Ruby on Rails
 Laravel
 Django
 Phoenix

 Languages

 Ruby
 PHP
 Python
 JavaScript

 Elixir
 Crystal
 Node
 Go programming language

	
 Pricing

	
 Blog

	
 Docs

	
 Status

	
 Contact

	
 Meet the 'Badgers

 	
 Log In

 Start free trial

 	
 Blog Home

	
 Honeybadger

	
 Ruby

	
 PHP

	
 Python

	
 Elixir

	
 JavaScript

	

 Posts by Topic

 Ruby (192)
 Honeybadger (83)
 Rails (66)
 JavaScript (63)
 PHP (53)
 Laravel (35)
 Python (34)
 Go (16)
 Node (15)
 Briefing (13)
 Django (13)
 DevOps (10)
 Elixir (8)
 Aws (8)
 Briefing 2021 Q3 (7)
 React (7)
 FounderQuest (6)
 Briefing 2021 Q2 (6)
 Error Handling (6)
 Conferences (5)
 Testing (5)
 Security (4)
 Developer Tools (4)
 Elastic Beanstalk (4)
 Docker (4)
 Heroku (3)
 Debugging (3)
 Markdown (3)
 Serverless (3)
 Websockets (3)
 Sql (3)
 Logging (3)
 Events (2)
 Jekyll (2)
 Startup Advice (2)
 Guest Post (2)
 Sidekiq (2)
 Git (2)
 Front End (2)
 Rspec (2)
 Oauth (2)
 GraphQL (2)
 Flask (2)
 Nextjs (2)
 DynamoDB (2)
 Active Record (2)
 Case Studies (1)
 Performance (1)
 Allocation Stats (1)
 Integrations (1)
 Bitbucket (1)
 Mobile (1)
 Gophercon (1)
 Clients (1)
 Vue (1)
 Lambda (1)
 Turbolinks (1)
 Redis (1)
 CircleCI (1)
 GitHub (1)
 Crystal (1)
 Stripe (1)
 Saas (1)
 Elasticsearch (1)
 Import Maps (1)
 Build Systems (1)
 Minitest (1)
 Guzzle (1)
 Tdd (1)
 I18n (1)
 Github Actions (1)
 Postgresql (1)
 Xdebug (1)
 Zend Debugger (1)
 Phpdbg (1)
 Pdf (1)
 Multithreading (1)
 Concurrency (1)
 Web Workers (1)
 Fargate (1)
 Django Q (1)
 Celery (1)
 Amazon S3 (1)
 Aws Lambda (1)
 Amazon Textract (1)
 Sucrase (1)
 Babel (1)
 Pdfs (1)
 Hanami (1)
 Discord (1)
 Active Support (1)
 Blazer (1)
 Ubuntu (1)
 Kamal (1)
 Artisan (1)
 ViewComponent (1)
 Laravel Vapor (1)
 Render (1)
 Observability (1)

 	
 Write For Us

	
 RSS Feed

 How to Create PDFs in PHP

 PDF files are foundational for sharing documents across platforms. In this article, learn how to generate PDF files in PHP.

 	

 By Michael Barasa

	
 #php #pdfs

	
 Dec 1, 2022

 Portal Document Format (PDF) is among the most popular file formats today. Individuals can view, send, and receive PDF documents regardless of their operating system, hardware, or software. Thus, the contents of the PDF document will appear the same on all platforms. In this step-by-step tutorial, we will discuss how to work with PDFs in PHP.

You can access the complete code that will be used in this tutorial from this GitHub repository.

History of PDFs

Adobe introduced PDF in 1993 to allow people to share and present documents easily. Since then, PDF has become an open standard and is supported by the International Organization for Standardization (ISO).
Today, PDFs have evolved to contain business logic, pictures, audio, buttons, forms, and even links. Therefore, having some knowledge of working with PDFs in PHP is essential.

Prerequisites

To follow along with this tutorial, you need some basic knowledge of PHP, HTML, and SQL. You should also have installed XAMPP on your computer. This framework allows us to host the website locally.

How to Create PDF Files in PHP

Navigate to the xampp directory and then click on the htdocs folder. In most cases, the default xampp directory on Windows is found on Local Disk C.

Create a new folder and assign it your preferred project name. In my case, I will name it pdfexample. We can now open this folder in a code editor, such as Visual Studio Code.

In the pdfexample folder, add a new file and name it index.php. This file will serve as the root page for our website.

Add the following boilerplate code in the index.php:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Document</title>
</head>
<body>

<h4>Welcome to PDF Example</h4>
</body>
</html>

Next, launch the XAMPP control panel and start the Apache and MySQL instances. When you navigate to localhost/pdfexample/, you should see a page with a Welcome to PDF example message.

Up to this step, we have been setting up our development environment and hosting the application locally using XAMPP.

Let's now add a simple form and then generate a PDF.

Note that we will use Bootstrap for styling. Therefore, remember to add the following line in the head section:

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous">

In the index.php file, add the following content in the body section:

<div class="container mt-5">
 <h4 class="text-center">Welcome to PDF example</h4>
 <p class="text-center">Please fill the details before</p>

 <div class="col-md-6 offset-md-3">
 <form method="POST" class="form" action="createfile.php">
 <label class="form-label" for="username">Name</label>

 <input class="form-control" name="username" type="text" required>

 <label class="form-label" for="usermail">Email</label>

 <input class="form-control" name="usermail" type="text" required>

 <label class="form-label" for="residence">Residence</label>

 <input class="form-control" name="residence" type="text" required>

 <label class="form-label" for="yourstory">Your Story</label>

 <textarea class="form-control" name="yourstory" rows="5" required></textarea>
 <div class="d-grid gap-2 col-6 mx-auto mt-5">
 <button type="submit" class="btn btn-primary btn-block">Download PDF</button>
 </div>
 </form>

 </div>
</div>

In the above code, we have a simple form that allows users to enter their name, email, residence, and story. When users click on the submit button, they will be directed to a new page where they will download the PDF file.

In your project root directory, create a new file and name it createfile.php. It will contain logic for generating a PDF based on the user data.

We need to download and import the mpdf library into our project. To do so, ensure that you have Composer installed.

In your project's root directory, launch an integrated terminal and then install mpdf using the command below:

composer require mpdf/mpdf

Once the installation completes successfully, open the createfile.php file that we created earlier and then add the following code:

<?php
require_once __DIR__ . '/vendor/autoload.php';

The above line allows us to load numerous PHP classes automatically, thereby reducing errors.
We need to initialize the mpdf library before proceeding further:

$mpdf = new \Mpdf\Mpdf();

The next step is to retrieve user values in the $_POST method and store them in new variables:

$username=$_POST['username'];
$usermail=$_POST['usermail'];
$residence=$_POST['residence'];
$userstory=$_POST['yourstory'

We will store the above data in one variable, as follows:

$infor ='';

$infor .='<h2>Details</h2>';

$infor .='Username: ' . $username . '
';
$infor .='Email: ' . $usermail .'
';
$infor .='Residence: ' . $residence .'
';
$infor .='Testimonial: ' . $userstory .'
';

We can now display the data in the browser as a PDF file using the following code:

$mpdf->WriteHTML($infor);
$mpdf->Output();

The entire code in the createfile.php file is shown below:

<?php
require_once __DIR__ . '/vendor/autoload.php';

$mpdf = new \Mpdf\Mpdf();
$username=$_POST['username'];
$usermail=$_POST['usermail'];
$residence=$_POST['residence'];
$userstory=$_POST['yourstory'];

$infor ='';

$infor .='<h2>Details</h2>';

$infor .='Username: ' . $username . '
';
$infor .='Email: ' . $usermail .'
';
$infor .='Residence: ' . $residence .'
';
$infor .='Testimonial: ' . $userstory .'
';

$mpdf->WriteHTML($infor);
$mpdf->Output();
?>

When you navigate to your browser and click on the create a PDF file button, you should see something similar to the following:

How to Add Database Records to a PDF File

Most websites store user information in a database. Therefore, understanding how to present this data in a PDF is critical.

In this step, we will fetch records from a MYSQL database and then use them to create a PDF file. To get started, navigate to your localhost phpMyAdmin panel and create a new database.

Next, add a table and a few records. You can learn more about the MYSQL database here.

Once the database is successfully created, navigate to your project's root directory and create a connection.php file. It will contain logic to connect to the MYSQL database.

In the connection.php file, add the following code:

<?php
session_start();
 $con = mysqli_connect("localhost","root","","pdfexample");
 if (mysqli_connect_errno()){
 echo "Failed to connect to the database: " . mysqli_connect_error();
 }else{
 //success
 }
 ?>

In the above code, we are connecting to a local database named pdfexample. The database admin is root, and there is no password (for testing purposes).

If the database connection fails, an error message will be displayed.

To display our database records, create a new file and name it products.php. We will import the connection.php file here to allow us to connect to the database.

require_once('connection.php');

The next step is to access our table and retrieve all records:

$query = "select * from pdfrecords";
$result = mysqli_query($con, $query);

We will use a while loop to go through all entries in the database and then display them on the web page:

while($rows=mysqli_fetch_assoc($result)){

?>

<div class="col-md-3">
 <div class="card mb-4 shadow-sm">
 <img src=<?php echo $rows['imageurl']?> width=100%, height="170px" alt="./img/food.jpg">
 <div class="card-body">
 <h6><?php echo $rows['productname']?></h6>
 <p class="card-text"><?php echo $rows['productdesc']?></p>
 <div class="d-flex justify-content-between align-items-center">

 <strong class="text-primary" style="color:#ff0000">$<?php echo $rows['price']?>

 </div>
 </div>
 </div>
</div>

<?php

}

The following items will be displayed on the browser.

Remember to add a button at the bottom of the page to allow us to download the PDF file. We will link this button to a download.php file that we will create in the next step.

Here is the code for the products.php file:

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet"
 integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous">
 <title>Products</title>
</head>

<body>

<?php
require_once('connection.php');
$query = "select * from pdfrecords";
$result = mysqli_query($con, $query);

?>

<div class="album py-5 bg-light">
 <div class="container">
 <div class="row">
 <?php
 while($rows=mysqli_fetch_assoc($result)){
 ?>

 <div class="col-md-3">
 <div class="card mb-4 shadow-sm">
 <img src=<?php echo $rows['imageurl']?> width=100%, height="170px" alt="./img/food.jpg">
 <div class="card-body">
 <h6><?php echo $rows['productname']?></h6>
 <p class="card-text"><?php echo $rows['productdesc']?></p>
 <div class="d-flex justify-content-between align-items-center">
 <strong class="text-primary" style="color:#ff0000">$<?php echo $rows['price']?>
 </div>
 </div>
 </div>
 </div>
 </div>
 <?php
 }
 </div>
</div>
 ?>
<button class="btn btn-primary btn-block"> Download Products</button>
</body>

</html>

To generate a PDF file with the above data, create a new file named download.php in the project’s root directory.

In this file, we will once again import the connection.php file to allow access to the database.

<?php
require_once('connection.php');
require_once __DIR__ . '/vendor/autoload.php';

Next, we initialize the mpdf library:

$mpdf = new \Mpdf\Mpdf();

We then access records in the database table using a while loop. We will append each database entry to a string ($infor) and then display it at the end:

$mpdf = new \Mpdf\Mpdf();
$query = "select * from pdfrecords";
$result = mysqli_query($con, $query);
$infor = '';

while($rows=mysqli_fetch_assoc($result)){
 $infor .='<h4 style="color:red">Product: </h4>' .$rows['productname'] . '
';
 $infor .='<p>Description: </p>' .$rows['productdesc'] . '
';
 $infor .='<p>Price: </p>' .$rows['price'] . '
';
}

The final code in the download.php file should appear as shown below:

<?php
require_once('connection.php');
require_once __DIR__ . '/vendor/autoload.php';

$mpdf = new \Mpdf\Mpdf();
$query = "select * from pdfrecords";
$result = mysqli_query($con, $query);
$infor = '';

while($rows=mysqli_fetch_assoc($result)){
 $infor .='<h4 style="color:red">Product: </h4>' .$rows['productname'] . '
';
 $infor .='<p>Description: </p>' .$rows['productdesc'] . '
';
 $infor .='<p>Price: </p>' .$rows['price'] . '
';
}

$mpdf->WriteHTML($infor);
$mpdf->Output();

?>

When you access the download.php file in your browser, you should see a PDF document containing all your database entries:

The PDF file can be downloaded by clicking on the download icon on your browser.

Drawbacks to Watch Out For

In this tutorial, we have learned how to generate PDFs in PHP. The MPDF library has made it easier to create and format PDFs than using native modules. Nevertheless, you should ensure that the data are presented in the correct format to avoid bugs or errors in your code. For instance, the writeHTML method only accepts strings as its parameters.

You can access the complete code from this GitHub repository.

Happy coding!

 What to do next:

 	
 Try Honeybadger for FREE

 Honeybadger helps you find and fix errors before your users
 can even report them. Get set up in minutes and check
 monitoring off your to-do list.

 Start free trial
 Easy 5-minute setup — No credit card required

	
 Get the Honeybadger newsletter

 Each month we share news, best practices, and stories from the DevOps & monitoring community—exclusively for developers like you.

 Sign up

 Include latest PHP articles

 Michael Barasa

 Michael Barasa is a software developer. He loves technical writing, contributing to open source projects, and creating learning material for aspiring software engineers.

 	

 @MikeWanja
 Author Twitter

 More articles by Michael Barasa

 More PHP articles

 	
 Feb 13, 2024
 Deploying serverless applications with Laravel Vapor

	
 Jan 23, 2024
 Processes and Artisan commands in Laravel

	
 Nov 27, 2023
 Securing Laravel forms using Cloudflare's Turnstile CAPTCHA

	
 Nov 13, 2023
 A comprehensive guide to handling dates and times in PHP

	
 Nov 08, 2023
 Declaring check-ins in PHP/Laravel config

	
 Oct 23, 2023
 Using Markdown in Laravel

	
 Oct 02, 2023
 A guide to feature flags in Laravel using Laravel Pennant

	
 Sep 07, 2023
 A guide to soft deletes in Laravel

	
 Sep 04, 2023
 The definitive guide to object-oriented programming in PHP

	
 Aug 21, 2023
 Working with DynamoDB in Laravel

 Stop wasting time manually checking logs for errors!

 Try the only application health monitoring tool that allows you to track application errors, uptime, and cron jobs in one simple platform.

 	Know when critical errors occur, and which customers are affected.
	Respond instantly when your systems go down.
	Improve the health of your systems over time.
	Fix problems before your customers can report them!

 As developers ourselves, we hated wasting time tracking down errors—so we built the system we always wanted.

 Honeybadger tracks everything you need and nothing you don't, creating one simple solution to keep your application running and error free so you can do what you do best—release new code. Try it free and see for yourself.

 Start free trial

 Simple 5-minute setup — No credit card required

 Learn more

 "We've looked at a lot of error management systems. Honeybadger is head and shoulders above the rest and somehow gets better with every new release."

— Michael Smith, Cofounder & CTO of YvesBlue

 Honeybadger is trusted by top companies like:

 “Everyone is in love with Honeybadger ... the UI is spot on.”

 Molly Struve, Sr. Site Reliability Engineer, Netflix

 Start free trial

 Get Honeybadger's best PHP articles in your inbox

 We publish 1-2 times per month. Subscribe to get our PHP articles as soon as we publish them.

 Let me in

 Also send me the Honeybadger Newsletter

 We're Honeybadger. We'll never send you spam; we will send you cool stuff like exclusive content, memes, and swag.

 Are you using Sentry, Rollbar, Bugsnag, or Airbrake for your monitoring? Honeybadger includes error tracking with a whole suite of amazing monitoring tools — all for probably less than you're paying now. Discover why so many companies are switching to Honeybadger
 here.

 Start free trial

 Stop digging through chat logs to find the bug-fix someone mentioned last month. Honeybadger's built-in issue tracker keeps discussion central to each error, so that if it pops up again you'll be able to pick up right where you left off.

 Start free trial

 “Wow — Customers are blown away that I email them so quickly after an error.”

 Chris Patton, Founder of Punchpass.com

 Start free trial

 Product

 	
 Error Tracking

	
 Uptime Monitoring

	
 Status Pages

	
 Logging & Observability

	
 Cron & Heartbeat Monitoring

	
 Integrations

	
 Plans & pricing

	
 HB vs. Error Trackers

	
 GDPR

	
 Security

 Stacks

 	
 Rails

	
 Laravel

	
 Django

	
 Phoenix

	
 JavaScript

	
 Ruby

	
 Node

 	
 Python

	
 PHP

	
 Elixir

	
 Crystal

	
 Go programming language

	
 Cocoa

 Company

 	
 Meet the 'Badgers

	
 Job openings

	
 Brand assets

	
 Terms of use

	
 Privacy statement

	
 Contact us

 Resources

 	
 Developer docs

	
 Developer blog

	
 Newsletter

	
 Exceptional Creatures

	
 FounderQuest

	
 Twitter

